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Introduction

MR signals are complex numbers whose real and imaginary components are
independently Gaussian distributed (1).

The phase of the complex MRI signal is highly sensitive to many experimental factors,
and as such, the magnitude of the complex MR signal is used instead.

While the magnitude MR signal is not affected by the phase error, it is not an optimal
estimate of the underlying signal intensity (1).

Magnitude MR signals follow a Rician distribution (2,3).

Although several correction methods have been proposed (1,3-6) to ameliorate the
effects of the noise-induced bias on magnitude data, these methods do not produce
corrected data that are Gaussian distributed.

Here, we present a Signal-Transformational Framework (STF) to remove the
noise-induced bias in noisy magnitude MR signals by making noisy Rician signals
Gaussian-distributed.
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor1
The basic idea

A simple example illustrates the idea behind the proposed framework.

Suppose the noisy magnitude signals are drawn from a family of Rician distributions
all of which are characterized by different location parameters but with the same scale
parameter (e.g., diffusion-weighted signal as a function of b-value or fMRI signal as a
function of time).

The proposed framework attempts to transform the noisy magnitude signals such that
each of the noisy transformed signals may be thought of as if it were drawn from a
Gaussian distribution with different mean but the same standard deviation.

1The work has just recently been accepted and published in the Journal of Magnetic
Resonance: Vol. 197, Issue 2: Pages 108-119
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
A three-stage scheme

There are three stages in the proposed scheme.

First, a data smoothing method (one, two, or higher-dimensional penalized or spline
smoothing methods (7,8)) is used to obtain the average values of the noisy magnitude
signals. The degree of smoothness is selected based on the method of generalized
cross-validation (9).

Second, a novel iterative method is formulated to take both an estimate of the average
value of a noisy magnitude signal and an estimate of the standard deviation of the
Gaussian noise to an estimate of the average value of the underlying signal intensity.

Third, the corresponding noisy Gaussian signal of each of the noisy magnitude signals
is found through a composition of the inverse cumulative probability function of a
Gaussian random variable and the cumulative probability function of a Rician random
variable.
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
The First Stage

Since the first stage of the proposed scheme is readily available (7,8), our focus in this
presentation will be on the later stages.
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
The Second Stage

The goal of this stage is to take in two inputs, (the average (spline-smoothed) value,
denoted by hmi, and the estimated Gaussian noise SD, denoted by ffg), and return the
corresponding ‘average’ value, ”, of the underlying signal intensity.

The fixed point formula can be shown to be:

” =
q
hmi2 + (‰(”jffg ; N)` 2N)ff2

g :

where the scaling function ‰ is given by:

‰(”jffg ; N) = 2N +
”2

ff2
g

(˛N1F1(`1=2; N;`”2=(2ff2
g)))2;

and ˛N =
q

ı
2

(2N`1)!!

2N`1(N`1)!
.

The Newton method of root-finding for finding the fixed point of the underlying signal
intensity is outlined in (10).
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
The Third Stage (Distribution Mapping)

The goal of this stage is to transform nonCentral Chi (or Rician) distributed signals to
Gaussian distributed signals.

Mapping a nonCentral Chi random variable, m, to a Gaussian random variable, x, can
be achieved by a composition of the inverse cumulative distribution function of a
Gaussian random variable and the cumulative probability function of a nonCentral Chi
random variable, i.e.,

x = P
`1
G

(P~ffl(mj”; ffg ; N)j”; ffg); (1)

where the inverse cumulative distribution function of a Gaussian random variable is
given by

P
`1
G

(yj”; ffg) = ” + ffg
p

2erf`1(2y ` 1); (2)

and P~ffl(mj”; ffg ; N) is the nonCentral Chi cumulative distribution function, see (10).
The inverse error function, erf`1(a), takes in a and returns b by solving the following
equation: a = 2p

ı

R b
0 exp (`t2)dt

The Newton method of root-finding for finding the fixed point of the underlying signal
intensity is outlined in (10).
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
A schematic diagram

In the 1st stage, the spline
estimates,f —m1; ´ ´ ´ ; —mqg, are
obtained from the noisy
magnitude signals,
fm1; ´ ´ ´ ;mqg.

In the 2nd stage, the fixed point
formula takes in each pair of
data, ( —mi; ff̂g), and turns it into
a fixed point estimate ~gi.

In the 3rd stage, the
distributional mapping takes in
each quadruplet of
data,( —mi; ff̂g ; ~gi), and turns it
into the noisy
Gaussian-distributed signal, gi.
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
An example based on excised rat hippocampus data set

The data set contains a series of diffusion-weighted images obtained by varying the
diffusion gradient strength.

The rat was perfusion-fixed with 4% paraformaldehyde in phosphate buffered-saline
(PBS), the hippocampus was dissected and kept in fixative for more than 8 days. Prior
to imaging, the sample was washed overnight in PBS.

The imaging was performed using a 14.1T narrow-bore spectrometer where a pulsed
gradient stimulated echo pulse sequence was employed.

The imaging parameters were: TE = 12:6ms, TR = 1000ms, resolution
= (78ˆ 78ˆ 500)— m3, matrix size= (64ˆ 64ˆ 3), number of repetitions = 4,
diffusion gradient pulse duration (‹) = 2ms, and diffusion gradient separation
(´) = 24:54ms. The data set contains a total of 33 images with different diffusion
gradient strengths increasing from 0 to 2935mT=m in steps of 91:75mT=m.
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
An example based on excised rat hippocampus data set

One diffusion weighted image is shown
in Figure A. Four neighboring pixels
indicated with a red square were
selected for further analyses.

The noisy magnitude signals and the
noisy transformed signals of each of
the pixels as a function of b-value are
shown in Figures B-E as blue and red
dots, respectively.

The blue curve in each of the panels is
obtained through a least squares fit of
a bi-exponential function to the noisy
magnitude signals. The red curve in
each of the panels is obtained through
a least square fit of a bi-exponential
function to the noisy transformed
signals produced by the STF.

Based on the estimated Gaussian noise
SD and the assumption that each of
the red curves is a ground truth curve,
the expected value (or the first
moment) of a Rician distribution as a
function of b-values can be computed
and is shown in dark gray.
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Signal-Transformation Framework
(STF) For Breaking The Noise Floor
An example based on excised rat hippocampus data set

The estimated parameters obtained from a least squares fit of a bi-exponential function
to both the noisy magnitude signals and noisy transformed signals are shown here.
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Discussion

This work (STF) can be thought of as a sequel to but independent of PIESNO (11)
because the noise estimate on which the proposed framework depends may also be
estimated through other techniques.

STF and PIESNO represent our major attempt to decouple the fixed point formula of
SNR (10) into two self-consistent approaches for estimating the underlying signal and
the Gaussian noise SD.

The advantage of this decoupling is substantial because the estimation of the
Gaussian noise SD can be obtained from a much larger collection of samples (11).

As a consequence, the precision of the Gaussian noise SD estimate will be significantly
increased, and in turn, the precision of the underlying signal intensity estimate will
also be increased.

The combination of these stages presented here is, to the best of our knowledge,
unique and novel. Moreover, the formulation of the second stage is conceptually very
different from our previous approach (10).

The basic idea of our approach is general and can be easily adapted to many MRI and
non-MRI applications, e.g., the Laser Interferometric Gravitational Wave Observatory
(LIGO) (12,13) and communication systems (14) , by selecting an appropriate data
smoothing method that is optimal for the application-specific sampling space.
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http://sites.google.com/site/stframework.
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